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ABSTRACT

Rapid and effective blood carbon monoxide (CO) assessment is of great importance, 
especially in estimating CO-related morbidity and instituting effective preventive 
measures. The conventional detection methods using CO breath analysis lack sensitivity, 
while collecting biological fluid samples for CO level measurement is prone to external 
contamination and expensive for frequent use. This study proposes a one-dimensional 
convolutional neural network (1D-CNN) consisting of three stacked biconvolutional layers 
for binary classification of blood CO status using the diffuse reflectance spectroscopy 
technique. Iterative particle swarm optimization (PSO) has efficiently found the best 
network parameters to learn important features from the reflectance spectroscopy data. 
The findings showed good testing accuracy, specificity, and precision of 92.9%, 90%, 
and 89.7%, respectively, and a high sensitivity of 96.3% in determining abnormal blood 
CO among smokers using the proposed CNN network. Comparisons with eight existing 
machine learning and deep learning models revealed the proposed method’s effectiveness 
in classifying blood CO status while reducing computing time by 8–13 folds. The findings 

of this work provide new insights that are 
valuable for researchers in neural network 
design automation, healthcare management, 
and skin-related research, specifically for 
application in nondestructive evaluation and 
clinical decision-making.
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INTRODUCTION

Carbon monoxide (CO) is an odorless and colorless gas formed by the incomplete combustion 
of carbon-based compounds. Once air containing CO gas is inhaled and absorbed into the 
bloodstream, it binds preferentially to heme irons, forming carboxyhemoglobin (COHb). 
This condition leads to decreased oxygen-carrying capacity, depriving other cells of the 
oxygen supply essential for metabolism. It is the key factor for increased oxidative stress 
and inflammation in cells, causing defects and damage to highly oxygen-dependent organs, 
including the heart and brain (Carrola et al., 2023). 

Smoking tobacco smoke remains a major source of indoor air pollution (Raju et al., 
2020). Cigarette smoke produces a CO concentration of 3–6% (Turino, 1981) in the air. 
This concentration is 2–3 times higher in bidi and cigar smoke (Datta et al., 2022). Indoor 
combustion sources, current smoking status, and passive smoking are the major contributory 
factors to the increased CO levels in the blood. Other high-risk groups include workers with 
significant occupational risk, such as firefighters or charcoal production workers (Idowu 
et al., 2023). These adverse effects of CO in blood, known as CO toxicity, are factors that 
increase morbidity and mortality in immunosuppressed patients.

Smoking status and blood CO level have been mentioned in the literature (Hoeng et 
al., 2019; Nemmar et al., 2022) as reliable biomarkers for assessing outcome measures and 
predicting future disease development in patients. High-tech medical imaging modalities, 
such as magnetic resonance imaging (MRI), computed tomography (CT) scan, and retinal 
imaging, can provide a comprehensive analysis of CO concentration in the body (Vaghefi 
et al., 2019). They are not widely used for research due to their high cost, unavailability, 
and lengthy examination time. Biochemical analysis, blood gas analyzer, and ribonucleic 
acid (RNA) tubes are alternative methods to confirm smoking status, but these devices 
are invasive. Direct and noninvasive approaches, such as breath analysis and salivary or 
urinary cotinine tests (Ramani et al., 2023), are more suitable for outpatient management to 
assess smoking habits. However, the accuracy of expired gas analysis can be compromised 
in patients suffering from severe airflow obstruction (Papin et al., 2023), while food 
consumption pattern (i.e., presence of thiocyanate ions in various vegetables, fruits, and 
milk), lifestyle, and environmental and physical conditions are among the other factors that 
have a direct effect on the performance of breath analysis (Sharma et al., 2023 & Shreya 
et al., 2023). The shorter half-life of expired CO also makes it less reliable than cotinine 
measurement in urine and saliva (Usmani et al., 2008). Nonetheless, external contamination 
of body fluid samples is common during sample processing, leading to unreliable results. 
Besides, these test strips can be expensive if large specimens are needed. 

Spectroscopy is a simple and noninvasive technique to obtain optical information about 
a medium across a broad wavelength range. Knowing the properties of light absorption 
and scattering of the medium enables backward prediction of a substance’s concentration 
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and physical structure based on the measured light signals without destroying its integrity. 
This nondestructive feature, cost-effectiveness, and flexibility allow its use in endless 
possibilities. CO oximeter is a state-of-the-art photoelectric device capable of determining 
the percentage of CO saturation in blood using the optical spectroscopy method and with a 
fixed calibration curve. A previous study showed an elevation in the percent COHb, or blood 
CO level measured using a CO oximeter from 4%–6% in the control group to 8%–25% in 
smoking or acute CO poisoning patients (Bol et al., 2018; Onodera et al., 2016). However, 
the system can be unreliable for measurements outside the calibration curve defined using 
the absorbance ratio of isosbestic points 532 nm and 558 nm (Papin et al., 2023). 

Related Works

Deep learning is an emerging technique in artificial intelligence that allows rapid and 
fully automated extraction of important features from a dataset for the classification task. 
Among them, CNN is the most widely used method for vision-related tasks. A standard 
CNN consists of convolutional, pooling, and fully connected layers to learn a hierarchical 
representation of features from raw data. Pretrained CNNs, such as AlexNet, Residual 
Network (ResNet), GoogleNet, and Visual Geometry Group (VGGNet), are widely used 
to learn a new complex task by fine-tuning the weights of neurons in the model. 

Most models contain alternating convolutional and pooling layers to abstract features 
layer by layer. While these pre-trained models are generally recommended and proven 
promising for two-dimensional (2D) image processing tasks to 3D object recognitions, 
1D-CNN for signal processing problems has received little attention compared to its 
extended counterparts. Some works in the past demonstrated using 2D convolutional 
models for the 1D signal classification task with considerable success (Ahmad et al., 
2021), whereas others designed their 1D model from scratch. The process can be tedious 
and laborious as it involves tuning network hyperparameters, such as learnable weights 
and biases, as well as the layers’ arrangement and size. 

The research community used manual, automatic, or hybrid methods in designing the 
CNN model for a specific classification task (Yang et al., 2021). While manual methods 
include brute force or a grid search approach, an automatic search for the best model 
design can be carried out more aggressively using optimization techniques. Various types 
of optimization algorithms are available for this purpose, including randomized adaptive 
search procedures, such as the Markov decision process and Monte Carlo (MC) search, 
particle swarm optimization (PSO), genetic algorithm (GA), Bayesian optimization (BO), 
pattern search method, and gray wolf optimization (GWO). Each technique adopts different 
strategies to minimize a given function or cost measure and could be preferred over others 
in specific applications. Among these, BO is the most popular technique for optimizing 
custom-built CNN. This method works by incrementally building a probabilistic model 
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during optimization. Previous works (Kolar et al., 2021; Ling et al., 2022; Shi et al., 2021) 
reported considerably good classification accuracy using the 1D-CNN architecture and 
training hyperparameters optimized using BO for fault diagnosis and safety analysis. 

However, this technique does not scale well to higher dimensions and has high 
computational complexity. Pattern search is a direction-based method taking trial steps in 
each direction for each parameter within the range specified. The PSO works by iteratively 
searching in a region defined by the best success of the neighborhood particles. Meanwhile, 
GWO is based on the mathematical models of the social behaviors of gray wolves guided 
by iterative prey encircling and hunting processes. The GA method works by randomly 
generating different populations of generations and mutations in its search. These optimization 
techniques have also been applied in a wide area of decision-support systems. Layek et al. 
(2021) demonstrated using GA and PSO to determine the elasticity constant for application 
in thyroid cancer detection. In Goel et al. (2021), comparisons have been made to evaluate 
the performance of these techniques in optimizing the feature extraction and classification 
components. GA, pattern search, PSO, and GWO were shown to produce comparable results 
in their optimized models for automatic diagnosis of coronavirus disease (COVID-19). 

Another work by Tan et al. (2019) showed superiority in the performance of the model 
optimized using the PSO method compared to its competing models, namely GA and BO, in 
the security of unmanned aerial vehicle (UAV) networks. This finding is further supported 
by a review by Korani and Mouhoub (2021), who summarized the different advantages of 
PSO compared to other population-based algorithms as an optimization method. 

Unlike the machine learning method, the neural network offers the advantages of 
superior generalization and representation abilities at the cost of higher computational 
complexity and expensive hardware requirements (Asgharzadeh et al., 2023). Machine 
learning classifiers, for example, support vector machines (SVM), k-nearest neighbors 
(KNN), Naïve-Bayes (NB), and regression methods, require less computational and 
implementation effort, and they are also highly reputable for solving binary problems. 
Most machine learning algorithms are simple and easy to use, requiring fewer parameters 
to tune before training. However, their performance is comparatively inferior, especially 
when it involves nonlinear solutions or complex decision boundaries. To further enhance 
the performance of classification, some work in the past preferred using a binary classifier 
optimized using the optimization methods mentioned above for prediction. Examples of 
important works in this area are using a hybrid SVM-PSO system to improve landslide 
susceptibility prediction (Zhao & Zhao, 2021). Thote et al. (2017) used a KNN system 
optimized using GA to discriminate the different faults in transformer fault diagnosis.

Studies of optical reflectance for the classification of CO in vivo have not received 
much attention among the research community in the field, which is mainly due to the high 
sensitivity of the measurement to factors other than COHb, such as diversity in human 
skin colors, thickness, and time-varying physiological states (Huong et al., 2014). Several 
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recent studies using the optical method, specifically spectroscopy, in smoking and nicotine-
related investigations include a comparison study between a five-wavelength transmissive 
spectrophotometer and the standard radiography blood analyzer for detecting CO poisoning 
(Lyon et al., 2022). The study reported high consistency in the performance of the optical 
spectroscopy technique with the control device. Yi et al. (2023) demonstrated fluorescence 
spectroscopy for in vitro detection of CO in living tissues. Li et al. (2022) designed a novel 
optical-acoustic technology using an acoustic resonator to detect acoustic wave signals 
generated by the human exhaled gas molecules (i.e., CO) absorbing laser energy. 

These past studies used calibration curves and fitting models to predict the required 
value. Additional research using the spectroscopy method combined with the deep learning 
model for examining tissue COHb would be interesting. This article aims to present an 
optimized 1D-CNN model for a quick and objective classification of a person’s blood CO 
in skin based on diffuse reflectance spectroscopy. This study chose the PSO method for the 
optimization problem because of its excellent global convergence speed and effectiveness. 
The contributions of this work are threefold: 

1.  Advancement of research in developing the CNN model for blood CO classification 
by creating a new ultraviolet-visible (UV-VIS) spectroscopy dataset of nonsmoking 
and smoking subjects.

2.  An iterative PSO-based optimization strategy in automatically designing a 1D-CNN 
model to learn abstract features from the spectroscopy data.

3.  An effective detection solution for blood CO status with minimal computing 
resources. 

MATERIALS AND METHODS   

Participants and Selection Criteria

There is no public dataset for blood CO detection research using optical spectroscopy. 
This research built the first smoking-related CO dataset from experiments conducted at 
the Universiti Tun Hussein Onn Malaysia (UTHM) laboratory between 2015 and 2019. 
This study was approved by the Ethical Committee of UTHM (approval no. 100-9/39). 
Figure 1 shows the consort diagram of participant recruitment and analysis. One hundred 
seven subjects consisting of university students and individuals from the public were 
randomly approached and invited to participate in the studies; 41 declined. Most cite a lack 
of time and inconvenient schedules and locations as the main reason for their refusal. The 
remaining 66 volunteers were required to answer questions about their age and smoking 
habits, disclose their living and occupational status, health information, and medical 
history, and repeat prescriptions before the screening. The daily air quality index where 
the participants lived and worked showed acceptable readings with an average value of 
25 ppm during the study period. 
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The volunteers were assessed for their eligibility based on inclusion and exclusion criteria. 
The exclusion criteria included subjects with cardiovascular, endocrine, or respiratory system 
diseases. Of these respondents, sixteen were excluded because of their inconsistent smoking 
habits (n = 3), nonsmokers with the possibility of CO exposure in self-report assessment (n = 
7), or participants with medical records (n = 6) that could affect the results. Fifty people met 
the eligibility criteria and were enrolled in the study. These participants are never-smokers 
with no household cigarette smoke or occupational or indoor combustion exposure (n = 22) 
or regular smokers (n = 28) aged 18 or older who had smoked at least one cigarette per day 
for at least two years during the time data was taken. They were aged between 20 and 62 
years. They self-declared good general health and were not on long-term medication. 

Experimental System and Data Collection

Information about the sampling and data collection processes and experimental setup used 
for the measurement of diffuse light reflectance from the skin of control (i.e., nonsmoking) 
and investigation (smoking) groups were provided in the original studies (Huong & Ngu, 
2014, 2015). However, for completeness of this paper, they are summarized here. 

Figure 1. Consort diagram for participant flow
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Figure 2 shows the schematic experimental setup for skin reflectance spectroscopy. 
During these experiments, a white light-emitting diode (LED) (Model no. SMD 5730 
from Aira Technologies), placed at 80 mm from the skin and 20° from the normal axis, 
illuminated the selected skin area. The detection system consisted of a UV-VIS spectrometer 
(model no. USB4000 Ocean Optics, Florida) connected to a bifurcated fiber optic bundle. 
The fiber tip was placed 35° from the incidence plane and 20–40 mm above the skin. Light 
reflected from the targeted surface was collected into the optical fiber before being diffracted 
by the grating (1200 groves/mm) in Figure 2, which spreads the light spectrum (in the 
wavelength range of 178–898 nm) on a charge-coupled detector (CCD)-array inside the 
spectrometer. The intensity reading was recorded by a laptop installed with SpectraSuite 
software for further processing and analysis. 

On average, between 4 to 8 spectra were recorded from the index finger of the recruits 
during the resting state. The studies were carried out in a well-ventilated laboratory with 
an ambient temperature of 24 ± 2ºC. A total of 135 and 151 reflectance spectroscopy 
signals (N) were recorded from 50 subjects: 28 smoking and 22 nonsmoking individuals, 
respectively. Data analysis using a paired sample t-test performed with SPSS (version 2, 
IBM Inc.) with a confidence level of 95% showed statistical significance (ρ=0.0171) for 
inter- and intra-subject variability. Hence, they are treated individually as independent 
signals for the classification task. These sample sizes are sufficient for clinical research 
studies, as agree with the minimum sample size requirement of 137 (for smoking) and 101 
(nonsmoking group) calculated from the power size formula of Das et al. (2016). 

The signals of these volunteers were grouped according to their reported smoking 
status. These class labels are confirmed with the mean percent carboxyhemoglobin (COHb) 
values of 3%–7% and 8%–16%, respectively, for smokers and nonsmokers using the MC 

Figure 2. The UV-VIS spectroscopy measurement setup. Diagram also shows the inside of the spectrometer 
for detection of the reflectance spectrum
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approximation (Huong & Ngu, 2014, 2015). Figure 3 shows the participants’ stratification 
based on their smoking status and verification of the class labels. 

Based on the original data points of 1×3648 from the spectrum in the range of 178 nm 
to 898 nm (i.e., with spectral resolution of 0.2 nm), a fixed window of length 1×1415 was 
applied to truncate signals in the wavelength range of 420–680 nm in Figure 3, consistent 
with the output wavelength of the employed LED for the data mining process. Most 
importantly, there is a considerable variation and strong characteristic absorption peaks for 
hemoglobin variants in this range, which is suitable for detecting the oxygenation state of 
hemoglobin using the spectroscopy technique (Nitzan et al., 2020). These data handling 
processes, from data collection to signal processing and database archiving, are summarized 
in Figure 3. This study does not consider the feature selection method to preserve all 
information for investigation. Attempts at enriching the dataset using augmented data by 
adding and swapping uncertainties (i.e., noises) and the sliding window approach proposed 
by Ullah et al. (2018) have not yielded improved results. Thus, the original dataset was 
used and randomly split for training, validation, and testing purposes using a ratio of 
60%/20%/20% with a random seed value of 1 for results reproducibility.

Figure 3. Reflectance spectroscopy data handling process

Network Architecture Design  

The design of an end-to-end 1D CNN used in this research is inspired mainly by the structure 
and organization of the existing pre-trained networks, consisting of convolutional filters 
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(CONV), rectified linear unit (ReLu), max pool (POOL), fully connected (FC) layer, and a 
classifier. Specifically, stacked bi-convolutional and one-pooling layers (i.e., CONV1-ReLu1-
CONV2-ReLu2-POOL) are adopted as the basic structure of the CNN due to its universality 
and straightforward design. This architecture of alternating convolutional and pooling layers, 
like most pre-trained networks such as VGGNet and AlexNet, produces minimal features 
from the signal. Such an arrangement is referred to as biCONV. Next, two FC layers and 
a Softmax are followed for probability prediction of the signals for classification. The last 
layer is the classification output containing abnormal and normal classes. 

Several architectures have been attempted in which an additional biCONV block is 
progressively stacked on top of the preceding layers in each model version to deepen the 
network. Their classification training and validation accuracies were recorded and compared. 
The results revealed that the network architecture containing three stacked biCONVs in Figure 
4 produced considerably superior classification accuracies (i.e., increased by 5%–10%) than 
its shallower counterparts and negligible performance differences compared to its deeper 
counterparts. Therefore, the architecture in Figure 4 is chosen as the final design, and the 
results from this model are presented in the remainder of this paper.

Figure 4. End-to-end 1D-CNN model for blood CO status classification

Network Parameter Optimization  

The most common method for determining network hyperparameters (i.e., CNN kernel size, 
stride and filter numbers, and training parameters) is a grid search or brute-force method, 
whose decision is guided based on the classification accuracies of the trained model. The 
procedure is challenging, expensive, time-consuming, and has a limited coverage area. In 
this study, parameters of hidden nodes (i.e., input weights and biases) and some of the most 
important training parameters (i.e., optimizer type, mini-batch size, and initial learning 
rate) are fine-tuned during the optimization.

This study addressed this challenge by proposing a 16-degree-of-freedom problem to 
generalize the model for the task. The objective function to be minimized is as Equation 1:

𝑓𝑓�𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑡𝑡𝑠𝑠� = �(100 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ) + (100 − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 )� × 1𝑒𝑒3 +
𝑡𝑡𝑠𝑠

1𝑒𝑒3          (1)
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Tacc and Vacc are the training and validation accuracies, respectively, while ts is the 
run time for each search iteration. The iteration terminates prematurely if the validation 
accuracy fails to improve for ten iterations during the search process. The upper and lower 
range of variables that directly affect the objective function result is shown in Table 1. 
Since the neural network was trained from scratch, the learning weights and biases of the 
neurons were determined based on the kernel size or filter size of the convolutional layers 
identified through the optimization method.

Figure 5 shows an overview of network development and optimization processes for 
smoking status classification. After splitting the dataset (collected and annotated in Figure 
3) into training, validation, and testing cohorts, the training and validation sets were used to 
build the classification model and tune the relevant parameters. The PSO method was used 
for search purposes. The PSO works by iteratively updating the velocity and position of 
the particles of swarm size 200 by moving each particle based on the best-known previous 
positions within the boundary limits of the search space specified in Table 1. 

Each candidate solution created based on the random number generator was subjected to 
the search for a maximum of 500 optimization steps, making the search process stochastic, 
and it was based on the locations of the previous best solutions. This paper implemented 
the same padding strategy for each layer. It used a pooling size of (1×4) to overcome the 
mismatch in the feature map dimensions between the network layers from the chosen 
parameters. A stride length of (1×2) was used in all convolutional and pooling layers to 
ensure consistency in the proposed approach. This program attempted to search for the 
best solution (i.e., minimize the solution) to the objective function given in Equation 1. 
The search step for all integer variables was set to 1, and the step change of the initial 
learning rate was given by 1e-8. Meanwhile, in the efforts to cover the entire search space, 
this optimization process was repeated 300 times before determining the best solution. 

A fixed epoch number was used because the pre-experiment results showed 
considerably lower significance in its effects on network performance than the mini-batch 
size and initial learning rate. It could also reduce the complexity of the search and, hence, 

Table 1
Parameters range in the fine-tuning process

Description Parameter Lower limit Upper limit
Training hyper-parameter Optimizer, Opt {1→3; 1: Adam, 2: Sgdm, 3: RMSProp}

Mini batch size, β 8 1024
Initial learning rate, χ 1e-6 1e-2

Network learnable Kernel size* 1×2 1×10
Filter no.* 1×2 1×256
FC1 100 1000

*For all convolutional blocks (Conv1-Conv6) 



1471Pertanika J. Sci. & Technol. 32 (4): 1461 - 1479 (2024)

Blood CO Status Classification

computational resources. Several efforts have been made to improve the generalization of 
the model, including: 

1. incorporating a dropout regularization of factor 0.2 after biCONV and FC layers, 
2. using a high epoch number of 500 to increase training time, 
3. considering the spectral range that matches the LED output spectrum (i.e., signal 

windowing shown in Figure 3) to minimize unnecessary features in the analysis and 
4. an early stopping function monitors validation accuracy during the training process. 

Evaluation Metrics and Comparisons   

Different performance metrics have been used to evaluate the model’s performance for the 
classification task. Testing data that do not have a role in the training and validation phase 
was used to test the ability of the trained model to identify the person’s blood CO status. 
The considered evaluation metrics are accuracy (Acc), sensitivity (Sens), specificity (Spec), 

Figure 5. An overview of network development and optimization for smoking status classification
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and precision (Prec) in Equations 2 to 5, which can be calculated using a confusion matrix. 
The confusion matrix can be used to detect classification errors with four components: (1) 
a true negative (TN) is when a signal is correctly classified as a normal blood CO (class 0), 
(2) a true positive (TP) correctly classifies the abnormal blood CO case (class 1), (3) a false 
positive (FP) is when a normal blood CO signal is incorrectly classified as abnormal, and 
(4) a false negative (FN) is an error in which an abnormal case is misclassified as normal.

Accuracy (Acc) is the proportion of accurate results among the total number of cases 
examined.

𝐴𝐴𝑎𝑎𝑎𝑎 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

× 100 %      (2) 

• Sensitivity (Sens) or recall rate is the probability of a positive abnormal CO 

result among all abnormal data.  

𝑆𝑆𝑒𝑒𝑆𝑆𝑠𝑠 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

× 100 %       (3) 

• Specificity (Spec) is defined as the ability of a test to exclude normal data.  

𝑆𝑆𝑆𝑆𝑒𝑒𝑎𝑎 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

× 100 %       (4) 

• Precision (Prec) is the percentage of a correctly classified abnormal case to 

total positive abnormal results.  

𝑇𝑇𝑃𝑃𝑒𝑒𝑎𝑎 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

× 100 %     

            (2)

Sensitivity (Sens) or recall rate is the probability of a positive abnormal CO result 
among all abnormal data. 

𝐴𝐴𝑎𝑎𝑎𝑎 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

× 100 %      (2) 

• Sensitivity (Sens) or recall rate is the probability of a positive abnormal CO 
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Figure 6. The benchmark methods for comparison 
with the proposed network

This research chose some popular 
classifiers, namely SVM, KNN, Decision 
Tree (DT), logical regression (LR), Naïve-
Bayes (NB), and some of the popular pre-
trained networks (i.e., AlexNet, GoogleNet, 
and ResNet-18) as the benchmark models 
for comparison purposes, as summarized 
in Figure 6. These models were trained and 
tested using the same spectroscopy dataset 
for a fair comparison of the results. The 
threshold k-value in the KNN classifier 
varied manually from 1 to 10; the best 
result chosen based on the classification 
accuracy is presented in this work. In the 
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case of pretrained 2D models, the getframe function screenshotted each signal’s plot before 
saving it as an image. The image was resized according to the input size allowable for each 
network. The hyperparameter values, namely optimizer solver, mini-batch size, and initial 
learning rate, were chosen for training deep models using the PSO method following the 
minimization process in Figure 5. The weight of all layers was updated during the training 
process for the spectroscopy dataset.

RESULTS 

This study developed the CNN model from scratch, and the model that yielded the lowest 
objective function value given in Equation 1 is the best for classifying the blood CO 
status. This research approached this task by systematically stacking additional biCONVs 
consecutively to deepen the network. The final design of the 28-layer network shown in 
Figure 4 gives 841,509 learned parameters to extract features from the spectroscopic data 
for the smoking classification task. This paper presents the results for 100 sets of training 
parameters (i.e., optimizer (Opt), mini-batch size (β), and initial learning rate (χ)) that 
produced the lowest f value, plotted against its Tacc and Vacc in Figure 7. The best training 
hyperparameter set chosen from this plot is Opt = 2 (i.e., Sgdm), β = 555, and χ = 0.0035. 
Since early termination was adopted to speed up the search process, each search iteration 
time is recorded as ranging between ts = 3–50 seconds executed on an NVIDIA Tesla K80 
GPU with 12 GB of memory and 13 streaming multiprocessors. Based on the identified 
hyperparameters, the model training was repeated three times to ensure the reproducibility 
of the results. Figure 8 shows the best confusion matrix of the proposed 1D CNN system 
evaluated using the testing set. 

The same training and testing procedure was performed on the machine mentioned 
above for the eight competing models in Figure 6. The mean and standard deviation of 

Figure 7. The percent training (Tacc) and validation accuracies (Vacc) against 100 best training hyperparameter 
sets (χ: initial learning rate, β: mini-batch size, filled color: optimizer)
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DISCUSSION

This study demonstrated an optimization algorithm to find the appropriate weights and 
biases, extract important features from the spectroscopy data to classify blood CO and 
determine the best set of hyperparameters for the improved learning process of the CNN 
model. This method is used primarily to minimize the problem of classification accuracies 
and training time. The comparison of different methods in Table 2 shows differences in 
classification performance depending on the methods. The proposed model achieved a 
good classification accuracy of 92.9%, confirming the feasibility of the PSO-optimized 
method for the efficient development of the custom-made 1D-CNN model. 

Although classifiers, such as DT, NB, and LR, have a long history of being used for the 
two-class classification task, the presented results show that the CNN method outperformed 

Figure 8. The best confusion matrix of the proposed 
1D-CNN model tested on the testing data. Class label 
0: normal and 1: abnormal blood CO status

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tr
ue

 la
be

l 
 

0 

1 

0 1 
Predicted label 

Figure 8.  The best confusion matrix of the proposed 1D-CNN model tested on the 

testing data. Class label 0: normal and 1: abnormal blood CO status 

 

the evaluation metrics are shown in Table 
2. Also included in this table is the total 
elapsed time taken to solve the optimal 
training hyperparameters for the deep 
learning models (i.e., AlexNet, GoogleNet, 
ResNet, and the proposed 1D CNN) using 
the PSO optimization process are shown in 
Figure 5. The experiments using the KNN 
method with different k values in Figure 6 
produced the best accuracy result with k =7. 
Thus, it is presented in the Table 2.

Table 2
A comparison of blood CO status classification performance between the proposed model and state-of-the-arts

Model
Mean ± SD of evaluated metrics (in %)* Training 

time (in s)* 

Iterative 
optimization 
time (in s)†Acc Sens Spec Prec

SVM 67 100 29.6 61.2 0.52 ± 0.15 -
KNN 82.5 93 70.4 78 0.56 ± 0.36 -
DT 65 67 63 67 0.57 ± 0.39 -
LR 92.9 93 92.5 93 0.76 ± 0.11 -
NB 72 86.7 55.6 68.4 1.4 ± 0.07 -
AlexNet 85.9 ± 1.8 93.3 ± 3.3 77.8 ± 6.4 82.5 ± 3.6 54 ± 37 26,542
GoogleNet 81.3 ± 7 88.9 ± 11 72.8 ± 11 78.8 ± 7 210.5 ± 61 38,982
ResNet-18 88.3 ± 5 92.2 ± 5 83.9 ± 5.6 86.5 ± 4.8 166.4 ± 91 22,495
Proposed model 91.8 ± 1 93.3 ± 3.3 90.1 ± 5.6 91.5 ± 4.3 15.8 ± 8.2 4,750

Note. ACC: accuracy, Sens: Sensitivity, Spec: Specificity, Prec: Precision; *Mean and standard deviation (SD) 
results from three runs for optimized model training and testing; †Total time taken in iterative search of optimum 
training hyperparameters (deep learning models)
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most of these models. The testing accuracy ranged between 85% and 93% using the CNN 
type of networks compared to 65%–92% using binary classifiers. The spectroscopy data 
has no visually distinctive features separating normal and abnormal groups. Thus, this 
may explain why a reasonable decision boundary may not be achieved, rendering most of 
these linear classifiers fail to differentiate blood CO classes. This problem is not found in 
the case of pre-trained networks. Even though they were developed for image recognition, 
they worked acceptably well for the 1D problem, suggesting their sufficiency in extracting 
important features with deep layers of neurons. 

The SVM performs best in many applications through the optimal arrangement of 
hyperplanes for modeling the decision boundary. However, it fails to detect abnormal blood 
CO status in smokers with a classification accuracy of 66%. This classifier is overfitting 
to the nonsmoking class, resulting in perfect precision and specificity rates (i.e., FP rate of 
0) but poor sensitivity of 29%. Meanwhile, the KNN method that finds the closest objects 
in training data to the unknown input produced a reasonably good performance with a 
classification accuracy of 82% using the k-value of 7, implying that the distance-based 
strategy works better on small datasets like ours. 

An interesting attribute of the proposed model is that it has the least learnable 
parameters compared to the pre-trained models. Table 2 shows a significant decrease in 
its optimization and training times by up to 8 and 13 folds, respectively, compared to the 
deeper models without sacrificing generalization ability. Although some normal data have 
been misclassified as abnormal, as shown in Figure 8, giving a slightly inferior precision 
compared to ResNet-18 in Table 2, the designed model eliminates the need for complex 
architecture and is least likely to suffer from dimensionality problems. The robustness of 
this model is evident with its superior CO status detection sensitivity of 96.2% in smokers 
compared to the traditional models in Table 2, suggesting that this shallow and small model 
can recognize global coarse information with the first two stacked convolutional layers, 
while final stack layer is sufficient to learn the refining information further.  

In addition to optimizing network architecture, this study enhanced the model’s 
generalization through iterative tuning of training hyperparameter sets. Figure 7 shows that 
Sgdm has a high probability (~50%) of being chosen as the solver, followed by Adam and 
RMSProp. This outcome is not surprising given the high computing cost of the RMSProp 
(~1.12 folds longer training time than the others). The experiments found that the most 
feasible range of initial learning rate is between 0.0043–0.0058 and 522–599 for mini-
batch size using the employed spectroscopy dataset. An increase in the initial learning 
rate produced poor learning efficiency, where the exploding gradients incidence (i.e., 
training accuracies returned as invalid values) was observed. Meanwhile, the overall lower 
mean training accuracy of 77.2% compared to 80.98% in validation accuracies implies 
the possibility of underfitting the network. This issue is understandably due to the small 
training set. In the earlier experiments, attempts have been made to enlarge the dataset by 
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incorporating different noise signals into the original data, but no observable changes in the 
classification performance were noted. This finding can be interpreted as the ability of the 
proposed model to recognize noise signals (i.e., high frequencies) as unimportant features. 

On that note, lower frequency information may be identified as useful features, so 
extraction of better features through further modifications of the network architecture 
may be necessary to enhance the performance of the existing model. The final design in 
Figure 4 is determined after ten tests have been carried out, ranging from one biCONV to 
five-stack biCONVs, with fully connected layers’ dropout rates of 0.2 and 0.5. While the 
incorporation of dropout 0.2 generally produced better results in terms of classification 
accuracies than 0.5, the training and validation accuracies remained relatively constant 
beyond networks comprising three-stack bi-CONVs. 

This study is one of the pioneer and preliminary attempts to explore whether the 
proposed framework and technology can detect blood CO status. Those who chose to 
participate were self-selected. It limits the generalizability of the study; thus, research 
needs to be explored in larger samples in the future. Since this is not a strictly controlled 
experiment, the diet and lifestyles of the participants have not been regulated. Therefore, 
carefully designed and strict experiment conditions for future investigation are 
recommended. Studies exploring network capacity for predicting health risks for categories 
of abnormal CO are also a task for further research.

Classification of blood CO status using light reflectance spectroscopy demonstrated 
in this study is the first in the field to use optimized deep learning methods. This strategy 
is an efficient, rapid, and cost-effective approach for the task as compared to conventional 
breath analysis, which is unreliable in patients with severe airflow obstruction. Unlike the 
study by Lyon et al. (2023) and Yi et al. (2023) that required daily calibration verification 
and blood samples to be taken for CO classification using transmissive and fluorescence 
spectrophotometry systems, the proposed approach performed in-situ and real-time 
classification based on skin reflectance signals. This system is potentially useful as a tool 
for pre-hospital triage and evaluation of treatment in CO-poisoning patients. 

Future research should include larger data from human subjects of different physical 
characteristics and health problems to enhance the robustness of the proposed system in 
assessing a person’s CO exposure status and predicting health risks. In terms of classifier 
design, this study acknowledges the importance of further efforts to improve the developed 
model for the classification task. A more rigorous design procedure is expected to be further 
explored to allow more efficient extraction of high-level features for the task.

CONCLUSION

This paper adopts a PSO-optimized 1D-CNN model for blood CO classification using 
the optical spectroscopy signal. This work is the first to apply a deep learning approach 
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combined with spectroscopy to the blood CO abnormality classification task. The proposed 
optimization framework offers a time and effort-efficient approach to customizing the 
model. This method achieved comparable performance with most existing pre-trained 
deeper models while outperforming state-of-the-art binary classifiers. Potential directions 
for further research include deeper investigations and richer evidence about skin CO 
differences in a larger population with different physical parameters and clinical presentation 
to improve study generalization. In addition, there is still room for improving the network 
structure to extract the target features more accurately.
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